## **Definitions and Formulas for Advanced Mathematics**

### **LOGIC**

| $a \rightarrow b$ | a implies b |
|-------------------|-------------|
| u / 10            | apco &      |

$$a \leftrightarrow b$$
 a if and only if b

$$a \wedge b$$
 a and b

$$a \lor b$$
 a or b

$$A \cup B$$
 A union B

$$A \cap B$$
 A intersect B

$$\overline{A}$$
 complement of  $A$ 

### **ALGEBRA**

$$i = \sqrt{-1}$$
 imaginary unit

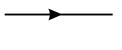
$$\overline{z}$$
 complex conjugate of  $z$ 

$$A^{-1}$$
 inverse of matrix  $A$ 

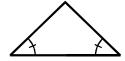
### **SERIES**

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \text{ for } |r| < 1$$

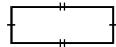
### **GEOMETRY**


 $S = 4\pi r^2$  surface area of a sphere

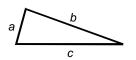
$$V = \frac{4}{3}\pi r^3$$
 volume of a sphere


~ is similar to

≅ is congruent to


### **Parallel Lines**

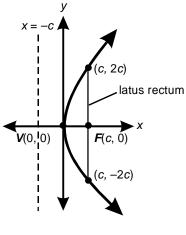



### **Congruent Angles**



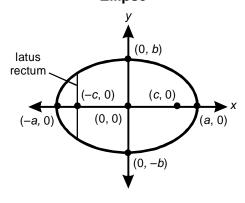
## **Congruent Sides**




#### **Hero's or Heron's Formula**



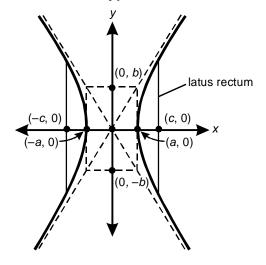
Area = 
$$\sqrt{s(s-a)(s-b)(s-c)}$$
  
where  $s = \frac{a+b+c}{2}$ 


## **ALGEBRA**

### **Parabola**



$$(y-k)^2 = 4c(x-h)$$


# Ellipse



$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

where 
$$c^2 = a^2 - b^2$$

## Hyperbola



$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

where 
$$b^2 = c^2 - a^2$$

# **Eccentricity of a Conic**

$$e = \frac{c}{a}$$

### **Directrices of a Conic**

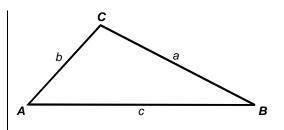
$$X = \pm \frac{a}{e} = \pm \frac{a^2}{c}$$

# **Exponential Growth and Decay**

$$y = a(1 \pm r)^t$$

### **TRIGONOMETRY**

$$\sin (\theta_1 \pm \theta_2) = \sin \theta_1 \cos \theta_2 \pm \cos \theta_1 \sin \theta_2$$


$$\cos (\theta_1 \pm \theta_2) = \cos \theta_1 \cos \theta_2 \mp \sin \theta_1 \sin \theta_2$$

$$\tan (\theta_1 \pm \theta_2) = \frac{\tan \theta_1 \pm \tan \theta_2}{1 \mp \tan \theta_1 \tan \theta_2}$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$



#### **Law of Sines**

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

### **Law of Cosines**

$$c^2 = a^2 + b^2 - 2ab \cos C$$

### **STATISTICS**

standard deviation of a sample mean =  $\frac{\sigma}{\sqrt{n}}$ 

#### NOTES FOR ADVANCED MATHEMATICS TEST

In this examination, assume all functions are real valued functions unless otherwise noted.

In this examination, diagrams may not be drawn to scale.

In this examination, assume all geometry problems imply the use of Euclidean geometry unless otherwise noted.